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Numerical calculations are performed to determine how persistent currents in mesoscopic metallic rings are affected by a 
diagonal disorder. We use a tight–binding model with long–range hoppings and the hopping integrals are assumed in such 
a way, that the resulting electron dispersion relation is almost the same as for free electrons. We analyze one– and two–
dimensional rings. We discuss the dependence of the amplitude of the persistent current on the concentration of impurities 
and on their potential.  
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1. Introduction 
 
There is a well–known problem connected with the 

amplitude of the persistent currents in mesoscopic rings. 
Namely, apart from ballistic regime, the magnitude of the 
measured current is two or three orders higher than 
predictions from one–electron theory.[1] On the other 
hand, currents measured in semiconductor rings with mean 
free path bigger than their circumference, remain in a good 
agreement with theory.[2] The last statement holds true 
even if the theoretical approach neglects the Coulomb 
interactions between electrons in the ring. It may suggest 
that the discrepancy that occurs for diffusive rings 
originates mainly from inadequate description of the 
influence of the disorder, rather than from the poor 
description of the electron-electron interactions. Still, there 
are many papers which demonstrate that this interaction 
can significantly enhance the current.[3] Therefore, it 
would be very useful to carry out calculations that account 
also for the Coulomb interaction. Unfortunately, it usually 
puts significant limits on the accessible size of the system 
under investigation (e.g. exact diagonalization[4]) or 
introduces hardly controllable, especially in low 
dimensional systems, approximations (e.g. mean-field type 
approaches). Therefore, in the present paper we focus on 
the role which disorder plays in small rings, being aware 
that our results can be modified when the Coulomb 
interactions are taken into account. We use a tight–binding 
Hamiltonian with long–range hopping and a diagonal 
disorder to describe one– and two–dimensional ring 
pierced by a magnetic flux. The hopping integrals are 
calculated from the condition that the resulting dispersion 
relation accurately fits that of the free electron gas. With 
the help of numerical diagonalization of the Hamiltonian 
we investigate how the persistent current depends on the 
disorder present in the ring. 
The disorder in a ring can be characterized by the electron 
mean free path l. It is known that the typical current (root 

mean square current, Ityp=〈I2〉1/2) in a metallic ring is 

proportional to the mean free path l.[5] Depending on the 
realization of the disorder different formulas for l can be 
used and the comparison of the theoretical predictions with 
the numerical results can give us some information 
concerning the applicability of these formulas. 
 
 

2. The model 
 
The rings are described by the following tight–binding 

Hamiltonian  
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Here, tij is the hopping integral between sites i and j, 

c
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iσ creates an electron with spin σ at site i of the ring, 
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†
iσciσ and εi describes the disorder. The magnetic 

flux enters the Hamiltonian through the Peierls phase 
factor θij, describing the orbital response of the system to 

an external magnetic field:  
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where Φ0=hc/e is the flux quantum. 

Our aim is to describe electrons moving in a metallic 
ring, where, apart from scattering by impurities, in the 
vicinity of the Fermi level they behave like nearly free 
electrons. Therefore, the hopping integral tij is non-zero 

not only for nearest neighboring sites i and j. Instead, we 
allow for long–range hoppings, choosing the values of tij 

in such a way, that the resulting dispersion relation is close 
to that for free electrons. In the case of a two–dimensional 
ring the procedure consists in minimization of a function  
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with respect to {t(n)}. Here, t(0)≡tii is the atomic level in 

the absence of the disorder, t(1) stands for tij for nearest–

neighboring (i,j), t(2) for next–nearest–neighboring (i,j), 

and so on, and E(t(1),:t(2),:t(3),:…;:kx,:ky) denotes the 

Fourier transform of tij for a given set of t(n)’s. Relation 

(3) also defines the energy unit as h2/2m. In an analogous 
way the hopping integrals have been determined for one–
dimensional rings. 
It has been shown in Ref. [6] that in two– and three–
dimensional rings the persistent current as a function of 
the magnetic flux strongly and irregularly depends on the 
number of electrons. This effect originates from numerous 
crossings between the energy levels. Each such a crossing 
leads to a jump in the flux dependence of the current. For a 
parabolic dispersion relation the low–laying states do not 
cross apart from Φ=nΦ0 and these jumps do not occur in 

systems with low carrier concentration. Therefore, in order 
to avoid this drawback, we have restricted further analysis 
to systems with only two electrons with opposite spins. 
Since we neglect the many–body effects, this restriction 
does not strongly affect the results. This assumption has 
another advantage connected with this form of the 
dispersion relation. In a small ring its width limits the 

number of allowed hopping integrals t(n) and therefore 
fitting to parabolic dispersion relation is not possible over 
the whole Brillouin zone. Fortunately, if there are only few 
electrons in the ring, only shape of the bottom of the band 
matters. Therefore, the cosine functions occurring in the 
Fourier transformation of tij have been expanded around 

the point (kx,:ky)=(0,:0)  in two–dimensional case, and 

then fitted according to Eq. 3. It assures that at least at low 
temperature the lattice electrons will behave like free 
particles.  

 
 

Fig. 1. Comparison of the dispersion relation for 
electrons described by a thigh–binding Hamiltonian with 
hoppings up to 18th nearest neighbors (solid line) with  
           that of free electrons (dotted line). 

 

Fig. 1 shows a comparison of two–dimensional 
dispersion relation obtained by taking into account all 
hoppings at range up to 18 lattice constants with a 
parabolic one and Figure 2 shows the difference between 
these two dispersion relations. The quality of the fit can 
also be seen in Figure 3, where the resulting density of 
states is compared to that of free electrons. 

 
 

Fig. 2. Deviation of the tight–binding dispersion relation 
from that for free electrons f(kx,ky) (Eq. Error! 

Reference source not found.) for momentum from the 
first Brillouin zone. 

 
Fig. 3. Comparison of the density of states for electrons 
described by the hopping term with hoppings up to 18th 
nearest neighbors (A) fitted to free electron dispersion 
relation (B). The dotted line (C) shows the density of 
states for lattice electrons with only the nearest neighbor  
                                         hoppings. 

 
 

3. Numerical results 
 

The typical current Ityp in a disordered ring depends 

on the actual realization of the disorder. In order to 
analyze this influence we have carried out simulations in 
two cases. First (case A), when there are some randomly 
chosen lattice sites (impurities) with atomic level shifted 
by a given energy with respect to the rest of the sites. We 
change both the concentration of the impurities as well as 
their potential (which is common to all of them). Such a 
system can be called a binary alloy. 

In this case the electron mean free path within the 
Born approximation is[7]  
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where ni is the concentration of impurities and U is the 

impurity potential, i.e., the atomic level of sites occupied 
by the impurities is given by εimp=ε+U, where ε is the 

common atomic level of the rest of the sites. 
In the second case (case B, the Anderson model), the 

atomic levels of all sites are randomly chosen from a range 
of (−W/2,W/2), where W determines the strength of the 
disorder. Since the persistent current strongly depends on 
the distribution of impurities or configuration of energy 
levels, for each set of parameters we have carried out 
numerous (up to one hundred) simulations, each time 
randomly generating disorder. Then the results were 
averaged over disorder realization. In this case elementary 
scattering theory says that the electron mean free path is[8]  
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3.1  One–dimensional ring 
 
In a one–dimensional ring consisting of N lattice sites 

we have taken into account all possible hoppings. Namely, 
using one–dimensional version of Eq. 3 we have 
determined N/2 hopping integrals. Figure 4 presents results 
for a disorder of type A: the lines show the typical current 
Ityp as a function of the concentration of impurities ni. The current is averaged over 100 randomly generated 
configurations of the impurities. Different lines correspond 
to different values of the impurity potential U (upper 
panel) and to different impurity concentrations (lower 
panel). The inset in the lower panel shows a comparison of 
the results obtained for the model with hoppings up to 18th 
neighbor with results for the nearest neighbor hopping. 
Since the bandwidth is different in these cases, it is not 
obvious how to compare such results. It has been argued in 
Ref. [6] that taking into account long–range hopping 
integrals leads to an enhancement of the persistent current 
by an order of magnitude. However, the authors used the 
nearest neighbor hopping integral as the energy unit and 
all the long–range hopping integrals were positive. As a 
result in the case of long–range hoppings the bandwidth 
was much larger than for the nearest neighbor hopping and 
the ratio of the strength of the disorder to the bandwidth 
was much smaller. This can explain the enhancement of 
the persistent current. In order to avoid such a situation, in 
the case of only the nearest neighbor hopping we have 
assumed such a hopping integral which, in the absence of 
the disorder, gives the same value of the current as 
obtained for long–range hoppings. It can be easily shown 
that the assumption of the hopping integrals according to 
Ref. [6] leads to currents one or two orders of magnitude 
larger than within our approach. However, this 
enhancement occurs even in the absence of a disorder, i.e., 
for rings in the ballistic regime, where the magnitude of 
the observed current agrees reasonably well with a simple 

one–electron theory. Additionally, if the energy unit in the 
approach proposed in Ref. [6] is chosen in such a way that 
the typical current in the absence of the disorder is the 
same as in our approach, the dependence of the current on 
the strength of the disorder in both these approaches is 
almost the same. 

 

 

 
 

Fig. 4. Typical current averaged over 100 realizations of 
the disorder as a function of the impurity concentration 
(upper panel) and of the impurity potential (lower panel). 
Results obtained for a one–dimensional 36–site ring. The 
tails visible in the lower panel for high impurity 
concentrations are artifacts of the numerical procedures 
and originate from the long distance hoppings. They do 
not occur in the case of only the nearest neighbor 
hopping. The inset in the lower panel shows a 
comparison of the current for long–range hopping (solid 
lines) with results for the nearest neighbor hopping 
(dashed lines) for ni equal to 2.8% and 30.6%. See text  

                                     for details. 
 
 

Fig. 4 presents data plotted in log-log scale. 
Therefore, if the simple approximation that leads to Eq. (4) 
was valid, and the system was in a diffusive regime, where 
〈Ityp〉∝l, the lines in both panels in Fig. 4 would be 

straight ones and parallel to themselves. Fig. 4 suggest that 
even for a medium values of U and ni Eq. (4) cannot be 

applied to our system.  
A slightly different situation occurs when the system 

is described by the Anderson model (case B). Figure 5 
shows the typical current as a function of the disorder 
strength W. For W of the order of the bandwidth the results 

can be fitted by 〈Ityp〉∝W−x but with x much larger than 2, 

what is in disagreement with Eq. (5). In fact, the section of 
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the curve which is straight in the log–log plot, can be fitted 
with x≈4, what indicates much faster suppression of the 
typical current by the disorder. Also in the case of the 
Anderson model, the correctly scaled results for only the 
nearest neighbor hopping (indicated in Figure 5 by the 
open circles) are almost indistinguishable from these for a 
long–range hopping. 

 

 
 

Fig. 5. Typical current averaged over 100 realizations of 
the disorder as a function of the disorder strength. 
Results obtained for a one–dimensional 36–site ring with 
site energies randomly chosen from a box distribution of 
width W. The solid line indicates results for long range 
hopping  and  the  open  circles for the nearest neighbor  

        hopping. The dashed lines are of the form Wx. 
 
 

3.2  Two–dimensional ring 
 
Figs. 6 and 7 demonstrate the typical current as a 

function of the disorder strength. As expected, the 
reduction of the persistent current by disorder in the two 
dimensional case is less pronounced than for purely one 
dimensional rings. This can be inferred from the slopes of 
curves presented in Figs. 5 and 7. In the case A, the slope 
of curves plotted in the log–log scale strongly depends on 
the concentration of impurities what, similarly to the 1D, 
visibly differs from the bahavior expected on the basis of 
the Born approximation. As can be inferred from Fig. 6 
long range hopping integrals do not influence the 
qualitative dependence of the persistent current on the 
impurity potential. 

 

 
Fig. 6. The same as in Fig. 5, but for a 36×6 ring. The 
current  has  been  averaged  over  20  realizations of the  
                                disorder. 

 
 

Fig. 7. The same as in Fig. 5, but for a 36×6 ring. The 
current  has  been  averaged  over  20  realizations of the  
                                       disorder. 

 
 

4.  Concluding remarks 
 
We have investigated the persistent current in a 

disordered one and two dimensional rings pierced by an 
external magnetic flux. Our aim was to find out whether 
the free electron dispersion relation suitable to describe 
metallic rings may suppress the reduction of the persistent 
current by disorder and explain the discrepancy between 
the experimental and theoretical results. Such a possibility 
has been suggested in Ref. [6], where the long range 
hopping has been included. Our results lead to an opposite 
conclusion. Although the long-range hopping integrals 
modify the magnitude of the persistent current, its 
dependence on the disorder remains almost the same as for 
the nearest neighbor hopping. This difference may 
originate from the choice of the hopping integrals. In Ref. 
[6] all the hopping integrals are positive, whereas our 
fitting procedure leads to positive as well as negative 
hopping integrals. 
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